翻訳と辞書
Words near each other
・ Log, Sevnica
・ Log, Slovenia
・ Log-Cauchy distribution
・ Log-concave
・ Log-distance path loss model
・ Log-Laplace distribution
・ Log-linear analysis
・ Log-linear model
・ Log-logistic distribution
・ Log-net
・ Log-normal distribution
・ Log-periodic antenna
・ Log-polar coordinates
・ Log-rank test
・ Log-space computable function
Log-space reduction
・ Log-space transducer
・ Log-spectral distance
・ Log-structured file system
・ Log-structured File System (BSD)
・ Log-structured merge-tree
・ Log4j
・ Log5
・ Loga
・ Loga Department
・ Loga Nayaga Shani Eswaran shrine
・ Loga Ramin Torkian
・ Logabirum
・ Logacta
・ Logan


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Log-space reduction : ウィキペディア英語版
Log-space reduction

In computational complexity theory, a log-space reduction is a reduction computable by a deterministic Turing machine using logarithmic space. Conceptually, this means it can keep a constant number of pointers into the input, along with a logarithmic number of fixed-size integers.〔Arora & Barak (2009) p.88〕 It is possible that such a machine may not have space to write down its own output, so the only requirement is that any given bit of the output be computable in log-space. Formally, this reduction is executed via a log-space transducer.
Such a machine has polynomially-many configurations, so log-space reductions are also polynomial-time reductions. However, log-space reductions are probably weaker than polynomial-time reductions; while any non-empty, non-full language in P is polynomial-time reducible to any other non-empty, non-full language in P, a log-space reduction between a language in NL and a language in L, both subsets of P, would imply the unlikely L = NL. It is an open question if the NP-complete problems are different with respect to log-space and polynomial-time reductions.
Log-space reductions are normally used on languages in P, in which case it usually does not matter whether many-one reductions or Turing reductions are used, since it has been verified that L, SL, NL, and P are all closed under Turing reductions, meaning that Turing reductions can be used to show a problem is in any of these classes. However, other subclasses of P such as NC may not be closed under Turing reductions, and so many-one reductions must be used.
Just as polynomial-time reductions are useless within P and its subclasses, log-space reductions are useless to distinguish problems in L and its subclasses; in particular, almost〔The word "almost" is used because there is one problem (and its complement) which no other problems can be many-one reduced to (although they can be Turing reduced to): the problem that accepts everything (and the one that rejects everything).〕 every problem in L is trivially L-complete under log-space reductions. While even weaker reductions exist, they are not often used in practice, because complexity classes smaller than L (that is, strictly contained or thought to be strictly contained in L) receive relatively little attention.
The tools available to designers of log-space reductions have been greatly expanded by the result that L = SL; see SL for a list of some SL-complete problems that can now be used as subroutines in log-space reductions.
==Notes==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Log-space reduction」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.